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We present numerical solutions for two-dimensional laminar symmetric vortex systems 
descending in a stably stratified fluid, within the Boussinesq approximation. Three 
types of flows are considered: (I)  tight vortices; (11) those deriving from an elliptical 
wing lift distribution; and (111) those deriving from a ‘high-lift’ distribution, with a 
part-span flap on the wing. The non-dimensional stratification ranges from zero to 
moderate, as it does for airliners. For Types I and 11, with high Reynolds numbers and 
weak stratification, the solutions confirm the theory of Scorer & Davenport (1970) 
(their article lacks a crucial link which we provide, equivalent to one of Crow (1974)). 
Contrary to common conceptions and observations in small-scale experiments, the 
descent velocity increases exponentially with time, as the distance between vortices 
decreases and the circulation of the vortices proper is conserved. With moderate 
stratification, wakes with sufficient energy also attain the accelerating regime, until 
the vortex cores make contact. However, they first experience a rebound, which is 
both of practical importance and out of reach of simple formulas. Type 111 wakes 
produce two durable vortex pairs which tumble, and mitigate the buoyancy effect 
by exchanging fluid with the surroundings. These phenomena are obscured by low 
wing aspect ratios, Reynolds numbers below about lo5, or appreciable surrounding 
turbulence; this may explain why neither a clear rebound nor an acceleration can 
be reconciled with experiments to date. We argue that airliner wakes have very little 
inherent diffusion, and that a rapid end to the wake’s descent must reveal effects other 
than simple buoyancy. In particular, stratification promotes the Crow instability. 

1. Introduction 
1.1. Background 

In her 1975 review Widnall described a state of extreme disagreement regarding the 
interaction of airplane wakes and stratified atmospheres. Although the theoretical 
models were all two-dimensional and essentially inviscid, some predicted a faster 
descent while others predicted an end to the descent, if not an oscillation. The 
implications for Air Traffic Control (ATC) are obvious, since ATC relies on the 
wake sinking below the flight path. Experiments were also conflicting, although not 
as strongly, and conclusive numerical solutions absent. Literature since 1975 has 
generally supported the attractive and now widespread idea that the descent would 
end, roughly, after 1/4 of the Brunt-Vaisala period (Hill 1975; Tomassian 1979; 
Hecht, Bilanin & Hirsh 1981; Sarpkaya 1983; Greene 1986; Robins & Delisi 1990). 
However we do not perceive the wing aspect ratios, effective Reynolds numbers, and 
durations in these studies to be representative enough of airliners. Both laboratory 
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experiments and flight tests are beset by failures of the visualization techniques, which 
may not be faithful to the vorticity. Furthermore, no rational theoretical resolution 
has been published. Many destruction mechanisms compete in the experiment, and 
uncertainty can reign as to which mechanism, or combination, is the controlling one 
(Tomassian 1979; Sarpkaya 1983). With aspect ratios as low as 2 the kinetic energy of 
the cross-flow field (normalized with the circulation) is lower than for airliner wings; 
the left and right vortical regions touch. The high-Reynolds-number, high-aspect-ratio 
rkgime deserved a modern and determined numerical study. 

As an example, in Hill’s (1975) numerical solutions the descent was impeded, and 
arrested in many cases. He concluded somewhat in favour of Saffman’s (1972) ap- 
proximation, which predicts an oscillation, over those of Scorer & Davenport (1970) 
(hereafter SD) and Crow (1974), which predict an exponential acceleration. However, 
he obtained most of his evidence with fairly strong stratification, which Crow stated 
is out of the range of his theory (SD did not). The other theories also use small- 
perturbation arguments; therefore they are also weak-stratification approximations. 
We believe that, had he identified this issue and continued his runs (which the stability 
of a point-vortex method may not allow, not to mention 1974 computers), Hill would 
in fact have concluded in favour of SD and Crow for weak stratification; see in 
particular the case p = lO-’m-’ in his figure 5. 

In another example, Hecht et al. (1981) conducted the numerical simulation of a 
flight test. They discontinued the simulation when the wake levelled off, even before 
the test report ended. The real wake (‘Run 8’) was not destroyed then, and it is even 
stated that it exhibited Crow linking out of view of the camera. Not surprisingly, 
Hecht et al. (1981) found that at the end of their simulation ‘the circulation remains 
high and the pair cannot be assumed to have dissipated’. A continuation of their 
simulation could well show the descent resuming, as in our results. Computational 
cost was a factor. We also note for future reference that, even though they used 
a turbulence model, their layer of buoyancy-generated vorticity was not noticeably 
thicker than ours and was almost all detrained from the oval region (see $3.2). They 
also found significant effects of the turbulence macroscale, thus underscoring the 
unavoidability of arbitrary parameters when a turbulence model is involved. This 
motivates our first fully exploring the laminar case. 

1.2. Major options of the study 

Our solutions are two-dimensional and have low viscous diffusion (2DLD, from 
here on), as we are interested in pure buoyancy effects in the wake far enough 
downstream for the slender-vortex approximation to be valid, and axial-flow effects 
to be negligible. There is evidence that the axial flow residual from Bernoulli effects 
and viscous momentum losses decays faster than the azimuthal flow. Strong axial flow 
is often seen again later, attributed to low core pressures, and leading to burst-like 
phenomena; we leave these for future work, necessarily three-dimensional. 

Several experts in the field, including a referee of this paper, disqualify 2DLD 
results as they believe that strong turbulent mixing controls real airplane wakes. The 
turbulence, possibly seeded by that in the wing boundary layers, would fill the oval 
region of fluid that translates with the wake and destroy or disperse much of the 
initial circulation within the durations of interest, say two minutes for a medium-size 
airliner (Greene 1986). In contrast, in 2DLD simulations circulation is conserved very 
closely, and the vortical regions are far from filling the oval. We believe vortex rings 
fit the fully-turbulent description much better than wing wakes do, both because of 
additional sources of instability and because their generation process spreads even the 
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initial vorticity over a larger region. The two-dimensional version of the vortex-ring 
generator has been used (Liu & Srnsky 1990) but even with special care to control 
the stopping vortex (which is of opposite sense), it is not clear to us that the vortex 
system it creates is correct in terms of initial core size (Liu & Srnsky indeed report 
a rather different response to stratification). Inferences from rings to trailing vortices 
demand caution. 

Even the impact of turbulence on single vortices is controversial, with evidence 
that turbulent mixing is greatly over-estimated by turbulence models developed for 
thin shear layers (Govindaraju & Saffman 1971; Zeman 1995). In their experiment 
on a single vortex without axial flow, Phillips & Graham (1984) find ‘no discernible 
downstream change in the velocity field’ and report rather erratic Reynolds-stress 
measurements, suggesting that a well-developed turbulent state has not evolved (the 
core has experienced over 4 full revolutions, which is a respectable ‘non-dimensional 
age’). Devenport et al. (1996) for their wing-tip vortex also report ‘little change in 
core parameters’ over 30 chords streamwise (about 40 revolutions at the velocity 
peak), and ‘at a rate that is not inconsistent with laminar diffusion’. They show 
how vortex meandering produces a spurious diffusion of the vorticity (although not 
circulation decay) in raw time-averaged measurements. It is also agreed that airliner 
wakes can remain vigorous for several minutes (Greene 1986, Conclusion 2), although 
they often do not. Condensation or smoke visualization show the ‘apparent wake’ 
(the marked region) remaining smooth and tight sometimes for several minutes, 
sometimes for a much shorter time. This would not happen if turbulence inherent to 
the wake were controlling, because such inherent turbulence would be reproducible 
(like boundary-layer turbulence). Our position is that the demise of the wake is much 
better described as a selfldestruction seeded by irreproducible external disturbances 
(atmospheric or airplane-induced) than as a reproducible gradual decay due to inherent 
turbulence. When the external disturbances are weak enough, the self-destruction is 
delayed enough for 2DLD behaviour to closely approximate that behind airliners. 
We assert that 2DLD results, although not universal, are relevant. From an ATC 
point of view they can be considered as worst-case situations, and therefore may in 
fact be the most relevant. The reader should keep this ‘diffusion controversy’ in mind 
for the rest of the paper. 

In this and related studies, we found that the initial core size, or equivalently the 
initial kinetic energy, and the shape of the wing lift distribution are both meaningful 
parameters. Therefore, using values representative of actual airplanes is necessary, 
while cases with tight vortices facilitate the validation of the theories. This motivates 
our three flow types. Our goals are to close the theoretical controversy that surrounds 
(2DLD) buoyancy effects, and to provide sound input for ATC considerations. This 
input is In no  sense a complete answer, as we predict that in real life stratification 
and other influences collaborate and compete in many non-trivial manners. 

2. Governing equations and numerical method 
2.1. Equations, boundary and initial conditions 

We use the Boussinesq approximation, as did most workers in the field. The typical 
amount of descent of an airliner wake is up to about 250 m, while the length scale 
L of the density gradient is typically lo4 m; therefore, density variations of only a 
few percent take place. Besides the two-dimensional incompressible Navier-Stokes 
equations for the velocity vector U and kinematic pressure p we solve for a non- 
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dimensional density perturbation field p. The density in the inertial term of the 
momentum equation is set to 1. The equations are 

v-u = 0, ( l a )  

(1b) 

(1c) 

Here, v is the kinematic viscosity and the Prandtl number Pr is set to 0.71. 
In the lateral direction, x, periodic conditions are used for all variables, and the 

period is denoted by Ax. The flow is also symmetric with respect to x = 0. In the 
vertical direction, y ,  periodic conditions are used for the variations with respect to 
a background gradient. The gravity vector g is pointing in the negative y-direction. 
The mean gradient i3p/i3y is denoted by - l / L  and the Brunt-Vaisala frequency is 
N = (g /L)’I2 .  There is also a background pressure gradient, adjusted so that it would 
maintain hydrostatic equilibrium (i.e. stationary mean v )  with the initial density field. 

Periodic conditions allow a Fourier-based spectral numerical method (Gottlieb & 
Orszag 1977), known for its high accuracy and moderate cost, exact volume conserva- 
tion ( l a ) ,  and absence of numerical dissipation. Periodicity makes budgeting of the im- 
pulse and kinetic and potential energy straightforward. On the other hand, differences 
between the periodic solution and the true infinite-domain solution must be assessed. 
Usually L, is smaller, so that lateral periodicity effects exceed the vertical effects. 

The effect of the periodicity on the mean vertical velocity is corrected by setting 
the average v-component in the periodic box to - d 0 / ( 6 A : )  in the initial condition, 
where lo is the initial impulse (defined shortly). This correction, derived by comparing 
the periodic and the infinite-domain Biot-Savart kernels (Lamb 1932; Art. 156), is 
indispensable as it may be as high as 20% of the initial descent velocity. The initial 
descent velocity in the figures and in additional tests of our code is in excellent 
agreement with the infinite-domain value. The effect of periodicity on the strain 
tensor is not corrected, but is of higher order in Ax: the ratio of parasitic to correct 
strain rate at the vortex centre is (nb/Ax)4/15 where h is the distance between the two 
vortices. As a result, a value Ax = 46 is sufficient. The vertical period is chosen so 
that during the simulation the pair travels by a distance less than &, with a margin 
at least equal to A x .  

The initial conditions are as follows. The scalar is undisturbed: dp/dy = -1/L. 
The mean u-component is zero by symmetry, and the mean v has been discussed. A 
smooth vorticity distribution o, resolvable by the grid, is created by the convolution 
of a Gaussian G with an ‘ideal’ singular distribution 0. This ideal distribution derives 
from the circulation distribution T ( x )  on a planar wing located at y = 0: 

u, + u-vu = -vp + vv2u + pg, 

pt + u-vp = -v2p. 
V 

Pr  

Here 6 is the Dirac distribution. 
The circulation distributions of Type I, 11, and 111 are shown in figure 1. They 

are symmetric (r(-x) = T(x)) and normalized to have the same ‘root circulation’ 
r (0) = To and initial impulse lo = J Tdx = robe. This defines the ‘effective span’ ho. 
These three wakes would be indistinguishable to the simple wake models. For Type I 
the ideal circulation is a step function: 
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FIGURE 1. Distributions of circulation. 

so that the initial vorticity is made of two circular Gaussian vortices with core 
size G, as in Robins & Delisi (1990). For small o/bO. without stratification, this initial 
condition gives a quasi-steady flow. 

For Type I1 the ideal circulation is elliptical: 

where h,,. = 4h0/71. This flow starts with a transient. the ‘initial roll-up’, which leads 
to a quasi-steady flow if unstratified. 

For Type 111 a distribution generic of some airliners in high-lift condition was 
defined by assembling two elliptical distributions such as the one for Type 11. The 
step in T at x = 0.3ho is attributed to an inboard flap, partially offset by the opposite 
lift on the horizontal tail. The kinetic energy of the (u.  r )  field in an infinite domain is 
about 0.31, normalized with Po (as opposed to 0.39 for Type JI), and the lifting-line 
‘efficiency factor’ is e = 0.93. The motivation is that we have found that the mature 
wake of Type 111 contains two vortices on each side. This is true in low-diffusion 
simulations, 21s well as in a wind tunnel up to 13 spans behind a generic high-lift 
model with a circulation Reynolds number of about 900000 (de Bruin et al. 1996 
and unpublished further work by the same group, 1996). The resulting flow is quasi- 
periodic in time even after initial roll-up and, unlike the quasi-steady wakes from 
Types I and 11, this wake is not followed from the initial altitude by a ‘bubble’ of 
fluid. We anticipated that the sustained exchange of fluid with the surroundings 
would weaken the buoyancy effect. 

Besides the Type, 1 to 111, the problem we defined has three non-dimensional 
parameters: the normalized width of the initial vorticity, r( = rr/ho; the Reynolds 
number Re = To/v;  and the ‘stratification number’ (inverse Froude number) 
N l  = 2rNh; /To.  The spread of the vorticity is controlled by ri and Re which 
are set low and high enough. respectively, to not influence the conclusions. In the 
figures. lengths and times are normalized using r0/271 and ho, and simply denoted by 
x. t ,  and so on. Circulations are still normalized with T o  itself. 



144 P. R. Spalart 

2.2. Numerical method 
Fourier series are used as spatial discretization, with the nonlinear terms calculated in 
real space (Gottlieb & Orszag 1977) and de-aliasing applied with the 2/3 rule. Tests 
without de-aliasing resulted in sudden instabilities, which shorter time steps did not 
suppress. Other authors have reported stability problems for the stratified equations, 
which we attribute to the extra derivative present in the coupled system (1). The 
de-aliased code has been fully reliable with automatic time-step adjustments to hold 
the peak CFL number. 

Since the differentiations of the stream function, pressure, and Laplacian are 
performed exactly in Fourier space, it is immaterial whether the method is presented 
using primitive variables, stream function, or vorticity. The only decision was which 
form of the nonlinear terms to carry from real to Fourier space; we chose ( u o ,  -uo ,  
up, u p )  for reasons of convenience. The time integration uses the low-storage semi- 
implicit Runge-Kutta-based scheme of Spalart, Moser, & Rogers (1991), and the peak 
CFL number is usually set to 2. This time-integration scheme is not energy-conserving 
(in contrast with the spatial discretization), but energy budgets show the ‘numerical’ 
energy loss to be much smaller than the viscous loss calculated from the integrals 
of the enstrophy and density gradient squared, even at a Reynolds number of lo5. 
Numerical oscillations are also monitored to detect possible insufficient resolution. 

A typical numerical resolution is as follows. In the x-direction, 400 points cover 
the period Ax = 4bo (shortest resolved wavelength: 0.03bo). The resolution is the same 
in y :  A,, = 30bo and 3000 points. The viscosity is v = 2.5 x 1OP5ro  (Re = 40000). 
Unstratified simulations can be run at any Reynolds number without catastrophic 
inaccuracies, provided the initial condition is well resolved, as the exact vorticity is 
known to remain bounded in two dimensions and the numerical method duplicates 
this rather well. It is the resolution of the density that sets the Reynolds-number 
range that can be accommodated accurately. The strain rate S at the stagnation 
points is J31‘0/(271hi), which creates internal density boundary layers that approach 
error functions with length scale 0’ = (2v/SPr)’/’ = 0.016bo. With a grid spacing 
Ax = O.O1bo the spectral method is able to resolve these gradients with a very small 
amount of ‘ringing’. For other cases the grid spacing follows the power -1/2 of the 
Reynolds number. For a case with moderately thin cores the time step is initially 
about 6 x 10-’b;/To, and the simulation uses about 15 000 steps. 

In the calculations of Robins & Delisi (1990) a damping term dependent on the 
x-wavenumber was used; the shortest wavelength unaffected by damping was about 
bo/2, so that our estimate of the effective Reynolds number ro/ve,f is only about 
250. Their high value r( = 0.2 was not conducive to the appearance of the finer 
structures. This motivates our earlier remarks on effective Reynolds numbers, and is 
not disputed by the authors; our study has been vastly more costly than theirs. 

3. Structure and scaling of the asymptotic state 
3.1. Overview 

We consider a state as described by SD, Saffman (1972), Crow (1974), and others, 
which we believe is the only one amenable to a simple theory. The flow is mature, 
quasi-steady, and nearly inviscid. The vorticity created initially, positive in the 
right-hand wake half, has remained tight and is segregated from the (predominantly 
negative) vorticity created by buoyancy. The vortex spacing b, suitably defined, may 
deviate from bo. A tadpole-shaped region of light fluid of size proportional to b 
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is propelled downward by the vortices, leaving a narrow tail of light fluid. The 
buoyancy-generated vorticity is confined to a thin layer on the light-heavy interface. 

We use Type-I numerical solutions to guide the theoretical effort. By combining 
the initial core size and the subsequent viscous diffusion we find that the vorticity 
segregation requires the condition C T ~  +4vt4h2. The second requirement of a tractable 
model is for the density to be close to uniform over the neighbourhood of the vortices. 
The density anomaly Ap with the outside is - Y / L  where Y denotes the position of 
the vortices relative to the initial state. We therefore require b 4 l Y  1 ;  the wake descent 
has been much larger than its (current) size, although still much smaller than the 
length scale L of the density gradient for the Boussinesq approximation to apply. 
We require a small perturbation relative to the neutral state, therefore the current 
stratification number N "  = 27c1"\1b2/r must be small. It does not follow that the initial 
stratification number N,* was small, because h can decrease significantly, as we show 
below. 

The two asymptotic conditions become 

They require tight initial cores, 0 4 6 .  The time needs to be large compared with b2/r, 
but small compared with b 2 / v ,  hence the need for a large Reynolds number, Re*1. 

3.2. Flow pattern and the detrainment issue 
In figure 2 we present a weakly stratified case, and a neutral case (g = 0) for 
reference. Fair estimates of the inequalities needed, as opposed to the asymptotic 
requirements ( 5 ) ,  are 25(02 + 4Tt/Re) < b2 and / Y  1 3 20b. These are reached with 
the parameters (Re, and so on) used here. The uniformity of density is well indicated, 
and the proportions of the light-fluid region are those of the oval of fluid that 
follows a vortex pair. The unstratified wake descent is within 1% of the descent of a 
point-vortex pair in an infinite domain. 

In the stratified case the vorticity segregation is clear; the buoyancy-generated 
vorticity is overwhelmingly detrained, instead of circulating around the vortices (refer 
to Widnall's 1975 figure 2). If that is so, we arrive at a clear scaling by considering the 
flow as quasi-steady in a reference frame that follows the vortices, and accounting for 
the separate contributions to the near-equilibrium. In contrast, past workers without 
the benefit of low-diffusion numerical solutions made widely diverging assumptions 
at this juncture. 

We introduce the notation w I  for the vorticity created initially (positive, found near 
(0.4, - 16.6) in figure 2c) and w2 for that generated by buoyancy and present near 
the vortices (negative, found near (0.7,-16.6)), with the corresponding notation U1 
(meaning V x U I  = co,) and U 2 ,  as well as rl and f2. The vorticity contained in the 
tail is w3 (negative, found near (0.1,-15.6)). The exact boundary between 0 2  and 0 3  

does not matter ( y  = -15.7 would be plausible); its offset relative to the vortex just 
needs to be proportional to h. For the figures we explicitly define 6/2 and Y as the 
coordinates of the peak positive w value (0.34 and -16.64 in figure 2c). 

We assume r2<<ri, as supported by integrals of the field in figure 2(c) and verified 
later. Because the vortex is surrounded by irrotational fluid, its circulation is station- 
ary: dT,/dt = 0, and is intact to leading order: r l  = To. The velocities are dominated 
by ol and therefore of order T , / h .  The evolution of to2 results from a balance 
between buoyancy and convection by U , .  Buoyancy forces (the term gdp /dx  in the 
curl of ( l h ) )  are proportional to g A p ,  itself equal to N ' Y ,  so that their contribution 
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FIGURE 2. Distributions of (a, c) vorticity and (b, d )  density in solutions of Type I, with 
Re = 4 x lo4, r r  = 0.05, and t = 15. (a,b), N,* = 0;  (c ,d)  N,* = 0.1. Right half-plane only. 

to dr2 /d t  is proportional to N2Yb. The effect of convection by U1 (the term U I * V O ~  
in the curl of (lb)) on drz/dt is proportional to r2rl/b2. These two terms dominate 
the evolution of 012, therefore we have to leading order 

b3 N2 Y 
r1 r2 = el- 

for some positive constant C1. Also to leading order, the descent velocity is 

dY 
dt 2nb' 

rl 
~ =-- 

Finally we note that 0 2  is stronger above the vortex than below as a result of the 
build-up of vorticity along the streamline, thus inducing a velocity that contracts the 
vortex pair. To leading order, 

r2 
= C2% 

db 
dt 
- 

for some positive constant Cz. 
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FIGURE 3. (a) Descent and ( h )  spacing of Type-I vortices, theory (9) and simulations. rc = 0.05, 

~e = 4 104. 

We denote CI x C2 by C, and solve three equations for three unknowns: 

y = -  T o  sinh ( (C/2n)’”Nt)  , (9a) (27~C) l /~  Nbo 

b0 

cosh ((C/2n)‘12Nr) ‘ 
h =  

According to (6), (9) r2 decays to zero for large times at the rate exp(-(2C/n)’/*Nt), 
consistent with our earlier assumption Tz<TI.  SD also made the point that f2 peaks 
(at a time of about N t  = 1, with a value of about 0.15roN,*) and then decays. The 
instantaneous stratification number N* = 2nNb2/ r l  decreases to zero. 

Figure 3 shows a validation of (9), using weakly stratified Type-I cases and C = 2.75. 
It illustrates both the initial transient, during which (6) has not been established and 
which introduces a slight time shift relative to (9), and faintly the eventual saturation 
when the viscous spreading of the core and the contraction together defeat the model 
(predictably, viscous cancellation pushes the vorticity peaks apart and reduces the 
velocity). The improved agreement as N,* decreases is also clear. Direct tests of (6), (8) 
using these solutions, not shown, are satisfactory and strongly suggest that C is in the 
bracket [2.6,2.9] (C, w 10, Cz = 0.275 with a plausible border between w2 and w3). 
Another feature of the model confirmed by the numerical results is the conservation 
of rl (with OJ] extracted as the vorticity of positive sign found in the head region). 
The budgeting of the global circulation TI  + T 2  + r3, of the impulse (see (10) below), 
and kinetic and potential energy was made and found to be very satisfactory. This 
essentially rules out coding errors and serious numerical errors. 

3.3. Scorer & Davenport’s derivation and Saflman’s criticism 
Our analysis so far is similar to that of SD and produces the same result (9), with 
one crucial difference. We present C as a universal constant, but one that results 
from a non-trivial solution for 02; in contrast they directly give the value C w 2.85, 
which falls within our calculated bracket. This must be explained, especially in view 
of Saffman’s (1972) sharp criticism of the SD analysis. In an internal report he gave 
us, Crow (1974) correctly arrives at C z 2.85, by an argument that is superficially 
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different from ours, and he defends SD. Crow also gives a convincing if very brief 
argument to justify full detrainment of u2 (his p. 6). 

We concur with Saffman that the SD presentation is deficient; it could even be 
fortuitously correct. On p. 457 they identify the rate of change of impulse due to the 
effect of buoyancy on the head region (the product of the area of that region and 
the anomaly g A p ) ,  and immediately equate it to rodbldt, in our notation. This does 
not follow, because the buoyancy acts only to create vorticity on the interface. It 
does not displace the primary vortices; in fact the vorticity source term is zero near 
the vortices, since p is assumed uniform (figure 2 4 .  SD inherited this ‘leap’ from 
Turner (1960). The deficiency is resolved by the following argument. 

Let us for now ignore the ‘tail’ a3 of the vorticity distribution. A theorem states 
that in the absence of buoyancy forces a system of vorticity conserves its impulse, 
I = J J x co dxdy. An equation for d l  /dt is readily derived from (1). The pressure 
term clearly does not contribute to dl/dt, and it is found that the viscous term 
does not either. The remaining terms are convection and buoyancy, which can be 
rearranged as follows: 

d‘ = / I  u o dxdy + g / / ( p  - pm)  dxdy 
dt 

where pm(y) is the density as x .+ +GO. We verify that the first term on the right 
is zero, if u and co match (meaning o = V x U )  and U is divergence-free, in 
accordance with the basic theorem. A consequence is the ‘reciprocal’ property that 
J J u1u2 dxdy = - J J u201 dxdy. The integral theorems are correct both for infinite 
domains and for periodic domains, provided only that o = 0 in a neighbourhood 
of the periodic boundary x = +&/2 so that there is no viscous flux there and that 
pm(y) is re-defined as p(+AX/2,y). 

We now separate the impulse into I 1  and 1 2 ,  express all the identities and assump- 
tions we have gathered, and arrive at the following equations: 

dl2 
dt  

db dIl 
To- = - = / Ju2w dxdy = - ( p - p m )  dxdy---. (11) dt dt 

Now in the fully-developed regime, according to (6) ,  (9), dI2/dt*dll/dt. We then 
arrive at an equation consistent with (6), (8), the same equation as SD: 

db 
To- dt = g / / ( p  - pm) dxdy = Cb2N2Y 

where Cb2 is the area of the ‘tadpole’s head‘, now identified with the oval that follows 
the vortex pair in the ideal situation, C = 2.85. However, there is no indication 
that SD or Turner used the reasoning in (10)-(12) and in particular the reciprocal 
property. We did not obtain Davenport’s thesis, on which the paper was based. For 
now we consider the success of the SD/Turner formula as dependent on an intuition 
of the reciprocal theorem, and on the neglect of dI2/dt, neither of which they put 
into words. 

Regarding Saffman’s analysis, we cannot agree with his supposition on p. 112 that 
b is constant and varies. Again, there is no direct effect of buoyancy on w1. 
The result of this supposition is that the wake is predicted to oscillate, instead of 
speeding up exponentially. Of the studies quoted by Widnall (1975), only SD and 
Crow assumed full detrainment of the o2 vorticity. Therefore, we expect that none of 
the other ones would be consistent with our findings; some may well have addressed 
other rkgimes than the one here. 
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We are left with estimating the effect of the tail vorticity 03, which we have neglected 
until now. The velocity in the tail is low, and we can estimate its width from area 
conservation for the fluid region that was at y 3 0 initially (the light-fluid region). 
The head travels at a velocity ro/(27rb) and its area decreases at a rate (2C3/n) ' /*Nb2 
(use (6), (8)). Therefore the width of the tail near the head is (87rC3)' /2Nb3/To (this 
gives a width of 0.12, not inconsistent with figure 2c,d). It tends to zero as fast as 
( Y  much faster than h which is proportional to IYI-'. As a result the total impulse 
of the tail is finite as t -+ m, so that the velocity it induces near the head tends to 
zero at least as fast as jY compared with the velocity U 1  which is proportional 
to /YI.  We conclude that in the fully developed regime the velocity induced by 03 

can be neglected, and that the reasoning in (10)-(12) is valid. Figure 3 shows no 
sign that the length of the tail, which starts at zero, has much impact. The initial 
transient takes only a few units of t (each unit corresponds with one bo of descent), 
well explained by the requirement for p deviations within the oval to become small 
compared with A p .  

4. Behaviour for finite time, energy, and stratification 
4.1. Comparison with experimental results 

Sarpkaya ( 1983) studied the flow behind low-aspect-ratio delta and rectangular wings 
and stratification numbers N i  = 1, 3 /4 ,  1 /2 ,  and 0. The results, confirmed by a 
calculation of Robins & Delisi (1990) with rc = 0.2, support the idea that stable 
stratification arrests the wake descent, although Sarpkaya did not make such an 
explicit statement. He found no experimental support at all for the SD equations (9) .  
In an attempt to reconcile our stand with Sarpkaya's results we conducted simulations 
with a moderate Reynolds number ( R e  = 2 x lo4, which falls within his range), and 
values of r,, intended to roughly duplicate the larger cores generated by the low- 
aspect-ratio wings. We settled on the value rc = 0.25. The initial kinetic energy is 
0.2.5, normalized by ri, as opposed to about 0.39 for an elliptical distribution (Type 
11). The cores do not overlap appreciably at t = 0; therefore this initial condition is 
not excessively diffuse. 

In figure 4 our results agree quite well with Sarpkaya's for as long as he presented 
his. We must mention that unstratified results, not shown, are not in as good an 
agreement (from t = 2.5 on there is a shift between his results and the ideal descent 
rate, which he attributed to differences between delta and rectangular wings). Note 
that we did not even invoke any enhanced 'turbulent viscosity' to obtain agreement. 
Thus, we consider his experimental results as explained, but not representative enough 
of airliner wakes, on the basis of aspect ratio, Reynolds number, and durations (he 
does not comment on why some curves terminate before I = 3 while most extend to 
f = 6, but we presume the wakes broke up). We view his conclusions as correct and 
firmly guard against an interpretation of his results to mean that as a rule, under the 
efeect qf strut$cation alone, wakes only descend to a finite height. He clearly stated 
that other decay mechanisms were at play, and we return to this in 5.5.2. 

Tomassian's results (1979) first show an encouraging contraction of the pair but it is 
rapidly overwhelmed by an expansion, unrelated to stratification, which he concisely 
attributed to 'turbulence'. As we never observe such an expansion, we do not attempt 
a direct comparison. We do note that the spacing in stratified flow is as low as 2/3 
of the spacing in unstratified flow, which is not at all inconsistent with the theory. 
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FIGURE 4. Propagation of Type-I flows with rc = 0.25, Re = 2 x lo4, compared with experimental 
results of Sarpkaya, visually averaged. 

4.2. UnstratlJied Type-11 solutions 
The solutions used in $3 were designed to lead to the asymptotic state, in particular 
by using tight vortex cores; while a mathematical question has been answered, the 
relevance to realistic wake vortex systems is not established. The simplest useful 
measure of realism may be the ratio of kinetic energy to (Spreiter & Sacks 1951). 
First we consider the Type-11, elliptical-wing flow, which is well-known and a fair 
approximation of ‘clean-wing’ configurations. An intriguing property, independent 
of stratification, seems worth a digression. Figure 5 is obtained from a flow of 
Type 11, after the initial roll-up: t = 1. At that time and Reynolds number the 
vorticity contours are smooth and roughly axisymmetric (evidence is that the vorticity 
centroid is at x = 0.500, and the peak location wavers between 0.495 and 0.505). 
We considered the circulation T ( r )  around circles of radius r centred at the vorticity 
peak (but clipped at x = 0 if r > 0.5). The apparent circulation deduced from a 
horizontal cut of the vertical velocity component, corrected for the field of the other 
vortex, gives noisier but consistent results; this is of interest because it is what some 
ground-based experimental systems measure in flight tests. 

Our profiles of azimuthal velocity (defined as ue = F/ (2nr ) )  in figure 5(a) match the 
experimental trend shown in Widnall’s (1975) figure 1, namely, the velocity is lower 
than predicted by Spreiter & Sacks (1951) for moderate r ,  and much higher for small 
r .  They lead to the same kinetic energy; recall that Spreiter & Sacks (1951) adjusted 
the core size to match the energy (we corrected the error in their equation (15), which 
increases the core size by 11%, see Milne-Thomson 1958). For small r ,  the core radius, 
defined by the location of the peak tangential velocity, is very small. The disagreement 
with Spreiter-Sacks has been a puzzle from flight tests. The Spreiter-Sacks energy 
argument is no more successful when combined with a Gaussian vorticity core instead 
of a ‘top-hat’ core (not shown). An assumed distribution with a w K r-* range (equiv- 
alent to a logarithmic circulation, see below) appears necessary; unfortunately it needs 
to be ‘clipped’ both for small and for large radius, and at least three constraints are 
needed to complete such a model, as opposed to just one for Spreiter & Sacks (1951). 

Figure 5(b) shows that the circulation behaves logarithmically for over a decade in r .  
The Spreiter-Sacks formula r = min(1, [r/0.l09J2) and the Hoffmann-Joubert (1963) 
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FIGURE 5. Azimuthal velocity and circulation at a radius r .  Type-I1 flow, Re = lo5, r‘ = 0.01, t = 1; 
also Spreiter -Sacks and Hoffrnann-Joubert models. 

formula r = 0.27( 1 + 0.93 log(r/0.019)) are also shown (the parameters l - 1  = 0.27 
and rl = 0.019 were adjusted to obtain a fit, while 0.93 comes from H-J). The 
logarithmic range increased towards r = 0 as rc.  was reduced from 0.02 to 0.01, the 
outer part being unchanged. However, the log law extrapolates to r = 0 at r w 0.007, 
therefore this behaviour could not continue indefinitely as rc is reduced further. The 
logarithmic behaviour appears too clearly indicated to be fortuitous, but we are not 
optimistic about a theory to explain it. The relationship between R and X ,  discussed 
by Widnall (1975) on p. 149 (defined by f ( R )  = T(h,, - X ) ) ,  was plotted and found 
unremarkable. The logarithmic range extends roughly over 0.1 d r < 0.9, that is, out 
of the range of the near-tip Taylor expansion of T(.u) (square root of the distance to 
the tip). Thus it should be out of reach of the analysis of Moore & Saffman (1973). 

The logarithmic behaviour cannot be fully general; for instance we show below 
that some lift distributions produce two durably separate vortices per side, therefore 
even the near-axisymmetry after initial roll-up is not general. We calculated a flow 
with r ( . x )  the average of a Type-I and a Type-I1 flow: the circulation does display a 
logarithmic region, about half as long as for Type 11 (a factor of 4 in r ,  instead of 20) 
and with less slope ( r d r l d r  x 0.15, instead of 0.24). This suggests that a logarithmic 
region of some length can be expected from smooth lift distributions, but the slope is 
not universal if normalized with To. In the past the formula has often been used with 
rl  the location of peak F / r .  In that case the slope must be 1, not 0.93, and success is 
measured only in terms of the curvature of the function, not an easy proposition in 
view of experimental scatter. 

The Hoffmann-Joubert logarithmic formula has received experimental support 
and seems very successful here, although very sensitive to the value of r l :  even 
setting it  to 0.020 instead of 0.019 degrades the fit considerably. More importantly, 
our results suggest that a property of the inviscid roll-up has been erroneously 
attributed to turbulent mixing (our solution is two-dimensional, and therefore surely 
not turbulent). This would not come as a surprise, because in our opinion the 
‘turbulent’ justifications provided by Hoffmann & Joubert (1963) are physically weak. 
Govindaraju & Saffman (197 1 ) provide an alternative derivation, but ‘fundamentally 
different’ and implying the opposite sign for the shear stress. Other factors add 
confusion. Since Hoffmann & Joubert used two blades at opposite angles of attack 
in their experiment, there is no reason why their roll-up should be very close to 
that behind a wing. On the other hand, many of the subsequent measurements that 
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display the logarithmic behaviour (often more pronounced than in the original paper 
itself) did derive from wings. Our log layer is also much longer than the original (a 
factor of about 20 in r ,  as opposed to about 4). 

We conclude that the r findings, although we are far from a theoretical closure, are 
useful both in terms of reconciling flight-test and numerical results, and in discarding 
the Spreiter-Sacks model, as well as any turbulent basis for the logarithmic depen- 
dence of the circulation. They are also damaging for the Betz approximation, which 
implies f E r 1 / 2  (Widnall 1975); plots of f us. r1j2 (not shown) are unconvincing. 
At best, that approximation works only up to f = 0.1, and was 'covered' by viscous 
effects. 

4.3. Stratijied Type-II solutions 
We now consider longer, stratified Type-I1 solutions. With airliners in mind, the 
durations of interest are up to about t = 15, that is, the time needed for the wake 
to descend 15 effective spans at the ideal rate. Typical stratification numbers N; 
are in the range of about 0.1 to 1.2, with 1.2 being extreme since it arises for an 
airplane larger than a Boeing 747 (N," is roughly proportional to the square root of 
the weight) and strong stratification, N = 0.03 s-I. Thus we differ with Crow's (1974) 
position that N," = 0.16 is the upper limit of interest. The difference originates in his 
estimate of bo for a Boeing 747, which is quite low (with To correspondingly high), 
and in his position that N = 0.019 s-' is already 'untypically stable'. According to 
Charney & Drazin (1961), N = 0.019 s-' is in fact typical at sea level in the winter. 
We cannot confine our study to the weakly stratified regime, N,*+l. We choose values 
of 0.2 and 1; recall that the intensity of the stratification varies like Ni2.  For the 
Reynolds number and sheet thickness, manageable values (in terms of computing 
cost) are Re = lo5 and r ,  = 0.01. Unlike Type-I flows, the Type-I1 velocity profile is 
independent of rc except very near the centre. The N,* = 1 case was repeated with 
both numerical periods (A, and /Iy) doubled, causing only a 3% difference in the 
descent ; this confirms the adequacy of the boundary conditions we used. 

Figure 6 indicates that the Type-I1 cores are indeed thin enough for the acceleration 
mechanism to be relevant, not indefinitely, but for much of the duration of interest. 
Again our result for N," = 1 is in agreement with the experiment of Sarpkaya (1983) 
and the calculations of Robins & Delisi (1990), as expected based on the rough core 
size: the wake descends by about 1.2 in a time of about 2. However, for times 
larger than they covered, we find dramatically different behaviour. The decrease in 
b, seen in figure 3, is delayed by about 1.5 units of N t ,  but then occurs at about 
the same rate. By time t = 4, the vortices have reduced their spacing b by 75% 
and their circulation only by about 20%, and they break out of the initial bubble of 
light fluid. This is shown in figure 7, which is consistent with figures 2(f) and 3(f) 
in Robins & Delisi (1990) but with more structure as a result of the lower diffusion. 
The instantaneous stratification number is now much lower: N* = 0.06. The spacing 
reduction is clearly initiated in figure 2 of Robins & Delisi (1990), but they do not 
comment and view the primary vortices as 'a residual vortex pair'. At later times b 
becomes as low as 0.03; the circulation then drops rapidly as a result of the cores 
touching. Around t = 9 the location of the vorticity peak jumps back to the region of 
activity left behind by the vortex pair, pointed out by Robins & Delisi (1990). While 
this jump is distracting (as well as Reynolds-number dependent), it usefully illustrates 
the large extent of the disturbed region. In any case, the head region has remained 
very active. 
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t 
FIGURE 6. Propagation of Type-I1 wakes. Re = lo’, I’, = 0.01. 

With N,* = 0.2, the wake smoothly accelerates after a slight deceleration, and for 
the times of interest behaves like a Type-I wake. In particular, at N t  = 2, b = 0.55 
which is close to figure 3 .  The cores do not touch, yet, and there is no circulation 
loss (rl was calculated). In summary, for representative clean-wing flows (and not 
just for tight vortices) the SD model is globally the correct one: it just does not apply 
as long as N* is of the order of 1. The assertion that the descent is arrested around 
N t  = 71/2 by stratification alone is simply incorrect. 

It is unfortunate that the descent pattern seen in figure 6 is not amenable to a 
simple analytical description. In practical situations, neglecting the stratification effect 
would be a fair approximation for rather weak stratification (say Ni 6 0.5). However 
for a very large airplane in strong stratification, leading to N; = 1, it would not be 
correct, from an ATC point of view, to neglect the rise around time t = 3 .  Therefore, 
a measurement of the Brunt--Viiisala frequency and a comprehensive model of the 
stratification effect will both be needed if an optimum ATC strategy is to be devised. 

4.4. Type-111 solutions 
As mentioned above the roll-up of Type-I11 solutions produces twin co-rotating 
vortices on each side. This is shown in figure 8(a). With Re = lo5, r,. = 0.01, 
they persist until the time t = 8, barely sufficient to discern the interaction with 
stratification when N i  = 0.2. Figure 8(b) shows the density, which is passive since 
Ni = 0 but illustrates the shedding of light fluid by the tumbling vortices. Light 
fluid, as well as exhaust or other markers, is distributed along a ‘curtain’ over the 
primary vortices. Compare with figure 2(h, d). The shedding reduces the buoyancy 
effect (the area of light fluid is smaller than Cb’, or if mixed, the average density 
anomaly is smaller than Y / L ) .  Figure 9 shows the descent for N i  = 0, 0.2, and 1. 
The outboard vortex is stronger, and therefore the one detected by the search for an 
absolute vorticity maximum; it is the upper one in figure 8(a).  

We first compare the Ni = 0.2 and Ni = 0 cases. Figure 9 displays the waviness 
characteristic of the tumbling twin-vortex system. As long as that system is in place, 
the descent is hardly affected by stratification. After that, a quasi-steady pattern is 
established and the stratified case accelerates, much like Types I and 11. The delay, 
relative to Type I1 (figure 6), is only about 2 time units. We conjecture that at even 
higher Reynolds numbers merging does not occur within the time of interest; the 



154 P. R. Spatart 

2 

1 

0 

-1 

Y 

-2 

-3 

-4 

-5 

v d 

0.4 0.8 
X 

2 

1 

0 

-1 

-2 

-3 

-4 

-5 
0 4  0.8 1 2  

X 

FIGURE 7. Distributions of (a)  vorticity and ( b )  density in a solution of Type 11, with A$ = 1. 

result would be that the effect of weak stratification is largely suppressed by the 
twin-vortex structure. For now we can only report a modest effect; lift distributions 
that exaggerate that effect can of course be designed, but we believe our Type I11 to 
be typical of existing airplanes. 

As before, the strongly stratified N{ = 1 case experiences a much slower descent 
at first. The waviness also disappears faster as a result of the buoyancy-generated 
vorticity mingling with the initial vorticity. Once merging has occurred, again the 
wake breaks out of the buoyant bubble and accelerates. We note that at t = 4 (a 
distance of the order of a nautical mile, for a very large airplane), it has returned 
almost to the initial level. The initial rebound is very strong (calculations at N{ = 1.2 
show wakes returning all the way to the initial altitude). In this instance our result 
shows the wake closer to the flight path than even the simple models of ‘finite descent 
and decay’ would predict; the wake is also much more active than they would predict. 
We have not found any intuitive argument why Type-I11 wakes would return closer 
to the initial altitude; note that the acceleration around t = 6 is just as vigorous as 
for the other types, therefore it is not a case of energy depletion. 
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5.  Discussion 
5.1. Overall predictive Capabilities 

We believe that the controversy described by Widnall (1975) is solved, in the 2DLD 
clean-wing setting. We have provided very supportive numerical results, including 
realistic vortex core sizes, and a clarification that makes the SD formulas (9) more 
convincing. In air-traffic practice, the level of stratification can exceed the range of 
validity of these formulas, and we obtained somewhat surprising numerical results. 
Figure 10 presents the propagation of all the wakes considered above: Types I, 11, 
and 111; initial stratification numbers N,* = 0, 0.2, and 1. The results are shown versus 
'wake time' t and versus 'Brunt-Vaisala time' N;t, in a search for a normalization 
that collapses many cases. The rebound with N; = 1 is weaker for Type I than for 
I1 and 111. Globally, the curves do not collapse, and do not even have shapes similar 
enough to suggest that a normalisation exists that would achieve a useful collapse. 
In particular the SD formulas (9) capture the evolution only when the instantaneous 
stratification number N" is at most equal to about 1/4, meaning a moderately weak 
stratification, and then with a time shift that is very meaningful in practice. We note 
that when N,'Y is relatively large (say of the order of -6) all the curves have about 
the same slope in figure 10(b), which is consistent with (9a) provided we allow for 
a virtual origin in time. Although the propagation of the vorticity peak does not 
represent all the information of interest, the fact that its behaviour seems out of reach 
of a simple formula indicates that a description of the physics by just a few empirical 
equations will not be devised easily. 

We experimented with an extended system of ordinary differential equations 
(ODEs), compared with (6)-(8). The effect of 0 2  on the descent velocity was 
not neglected, and we replaced (7) with dY /dt = --(To + CJ, ) / (2zb)  (equivalent to 
(4.6b) in Crow (1974)) where C I C ~  appears to be between 20 and 30 according to our 
Type-I, I?; d 0.2 solutions. This provided little improvement for the N,' = 1 case, very 
probably because (6) is not established rapidly enough. Upgrading (6) seems more 
difficult, as many effects compete during the initial roll-up that are hardly reducible 
to a few ODEs. Ultimately, ODEs that exploit only the circulation and the impulse 
cannot be expected to distinguish between the three flow types. 
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We also tested Crow’s (19741 equation (9.6), a correction for “buoyant upwash”. 
This correction is of order Ni and therefore larger than that in the preceding 
paragraph or in Crow’s own (4.6h). In his notation, we plotted dhldt + l /s  versus 
-~ , s~h /8n ,  for N6 = 0.2 and 0.1. We were unable to identify a regime in which the 
two were clearly proportional (p would then be constant). Comparisons between his 
figure 12 and our figure 3 are also inconclusive. He predicts a smaller b for larger 
N;.  The Njt  < 1 region shows clear disagreement; it is possible that the flow evolves 
towards the region of validity of his theory later, as suggested by the steeper slope 
of our Nt, = 0.2 curve for N i t  2 1. In any case, his figure 11 shows no sign of the 
rebound we wish to reproduce, therefore the difficulty with N; of order 1 remains. 

Our results invalidate the widespread idea that the wake descends for roughly 1/4 
of the Brunt--Viiisala period (N,*,t = n/2 in figure 10h) and then decays, at least in 
the 2DLD setting. Kinetic energy is, of course, lost to the buoyancy, but the vortex 
pair absorbs that loss by reducing its spacing (while roughly preserving its core size) 
and not by reducing its peak vorticity or velocity. The latter measures of the wake 
intensity are more significant than the kinetic energy in the case of interaction with 
another airplane. The reduction in spacing will precipitate the decay only once the 
vortex cores start touching, which happens during the duration of interest only for 
quite high stratification numbers, say N,’ >, 1/2. 

The intuitive expectation that stable stratification impedes motion, and pro- 
motes oscillations, is not completely contradicted by our results. As explained by 
Robins & Delisi (1990), the kinetic energy is depleted, and both kinetic and potential 
energy can be considered as deposited on a kind of a curtain along the path of 
descent (their figures 5-6, our 7).  The kinetic energy in the head of the wake is 
depleted. We also found that the total impulse of the flow oscillates in time, very 
close to the Brunt-Vaisdii frequency (it contains a large contribution from the tail 
region). This could be attributed to an internal-wave phenomenon. Thus, depending 
on which aspect of the flow we consider, it can be viewed as diverging, damped, or 
oscillatory. The behaviour is more complex than has been thought. 

We also note that the salient features of our results, namely the reduction in vortex 
spacing and the increase in descent velocity, can be tested by flow visualization. The 
apparent span indicated by dye in the vortex cores obeys (8). The experimental 
challenges are to reach a low enough level of mixing. viscous or turbulent, to obtain 
a reasonable segregation between the two vorticity patches, and more crucially to 
delay the Crow instability. The value A$ = 0.2 would be useful, as the spacing 
reduction is a measurable 20Y4 after a descent equal to 6 times the initial spacing. 
Such descents have been obtained in laboratories, but unfortunately not for stratified 
flow (Sarpkaya 1983). Larger values such as N;  = 1 are not desirable because the 
spacing reduction is fortuitously delayed until t > 3, both in our simulations (not 
shown) and in experiments (Northwest Research Associates. private communication 
19961. 

5.2. Destruction mei~hanisms 

Many mechanisms for instability and mixing are available In real flows, and not in 
our two-dimensional study. Therefore, separate estimates are desirable: we review 
candidate mechanisms in turn. As explained in $1.2 we are doubtful of turbulent 
mixing internal to the primary vortices, and will not discuss it further. Molecular 
mixing is negligible at flight Reynolds numbers, of course. 

In weakly stratified cases such as in figure 2, we have not seen Kelvin-Helmholtz 
corrugations on the to, sheet (unlike on oil during roll-up). We presume that ~2 is 
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too weak for sizeable growth to occur (the fluid carrying 012 is rapidly detrained). 
The more strongly stratified cases generate much more convoluted structures (Robins 
& Delisi 1990, figure 3, our figures 7 and 8) and the attendant steep gradients cause 
more dissipation. However, in most cases the wake succeeds in reducing N to the 
order of 0.2 and less, leading to situations closer to figure 2 after a few time units. 
The 0 2  layer could also support three-dimensional turbulence, as its curvature is 
conducive to a centrifugal instability. This is out of reach of the present code, but we 
observe that the associated mixing rate would very likely again scale with r2, which 
is much smaller than rl. In principle, this mixing was captured by the turbulence 
model of Hecht et al. (1981). 

A decay mechanism that is accessible to our method, and probably beginning for 
t > 3 in figure 3, is contact between the two cores accompanied by detrainment 
of primary vorticity (ol). For Type-11 cases, which have a non-arbitrary core size, 
we see from figure 5 that definite contact will occur when b has dropped by 40%, 
which figure 3(b) shows to be well within the range of interest. Another view is that 
the kinetic energy of the vortex pair is proportional to log(b/r,) with re an effective 
core radius. According to (9), b decreases exponentially whereas re cannot decrease, 
therefore the kinetic energy of the pair decreases linearly. This must cease at finite 
time, since in Type I1 the initial energy is finite (about 0.4, based on To). In a simple 
method an energy argument would probably be helpful to estimate decay by contact 
but, again, it would be accurate only for weak stratification. 

SD propose the following destruction mechanism for the stratified wake. The 
detrainment of w2 shown in figure 2(c) is dependent on the field U2 itself creating a 
clearance between the 0 2  layer and the upper stagnation point, and as r2 decreases 
to 0 full detrainment cannot occur any more. As soon as w2 is partly entrained, a 
situation with closed streamlines and circulation decreasing outward is created, and 
rapidly ‘leads to a breakdown of the vortices’. SD must envision a curvature-driven 
instability, therefore three-dimensional and out of reach of our method. However, 
entrainment should cause an increase in I r 2 1 ;  we have not seen this within the duration 
of our simulations. We also note that an instability affecting a much-weakened 0 2  

field (in figure 2c, T z  is only -0.013) may not have much leverage over the primary 
vortices, especially if the circulation distribution of those gradually rises with radius 
as in figure 5, which is stabilizing (SD envisioned only point or tight vortices). We 
await evidence that this decay mechanism is effective. 

A very convincing proposal is the enhancement of the Crow instability (Crow 1970) 
by the decrease in effective span. The Crow growth rates scale with bF2, and therefore 
can increase many times in some cases. Since the instability is not very selective of 
wavelengths and has a unique mode shape, very favourable growth ratios can be 
expected. We do not expect stratification to influence the growth rates directly, as the 
density gradients occur away from the primary vortices, and use Crow’s unstratified 
results for the rates. Consider Sarpkaya’s (1983) figure 13, for rounded tips, cases 
N{ = 0 and 0.5. The maximum travel is 6.lbo and 4.7b0, respectively. With N,* = 0 
and the classical wavelength ;1 = 8.6b0, the Crow amplitude ratio at the time for 
Y = -6.1 is 155. With N{ = 0.5 and a wavelength 2 = 5bo, the Crow amplitude ratio 
at the time for Y = -4.7 is about 135 (based on approximately integrating l /b2  from 
figure 3 times Crow’s growth rates for different p). We further observe that b has been 
roughly halved, which halves the amplitude needed for the vortices to make contact 
and initiate ‘pinching’. On the other hand if, like Crow, we assume a Kolmogorov 
spectrum, the turbulent velocity scale at 5bo is only 0.84 times that at 8.6bo. That leads 
to an ‘effective’ growth ratio of 230 for N,’ = 0.5. This number is close enough to 155 
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to make this mechanism quite consistent with Sarpkaya’s results (we motivate the 
words ‘close enough’ by the fact that log(230)/ log( 155) = 1.08 whereas 4.7/6.1=0.77). 
The uncertainty in the ‘receptivity’ coefficient and in the actual slope of the turbulence 
spectrum easily account for a factor of 155/230. We also neglected the possibility that 
the stratified tank had a lower turbulence level, which would bring the number down 
from 230. We concede that Sarpkaya did not find support for a decrease of b, but he 
clearly concluded that stratification arrests the descent only in ‘‘collaboration’’ with 
other mechanisms. In recent three-dimensional simulations, Robins & Delisi (1995) 
are indeed finding that stratification promotes the Crow instability and linking. We 
expect that further simulations of this type (preferably with natural stimulation 
of the instability) and further experiments (preferably with better control of the 
external disturbances), will narrow the gap between 2DLD results and laboratory 
tests. Combined, they will build our understanding of the full-size wakes. 

We benefited from numerous discussions with Mr Robins of Northwest Research 
Associates, Dr Coleman of UCLA, and Drs Bays-Muchmore and Crouch of Boeing. 
We thank all four referees for substantial comments. The mainframe computer time 
was donated by NAS. 
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